5. References
-
Bruseker G, Carboni N, Guillem A (2017) Cultural Heritage Data Management: The Role of Formal Ontology and CIDOC CRM. In: Vincent ML, López-Menchero Bendicho VM, Ioannides M, Levy TE (eds) Heritage and Archaeology in the Digital Age: Acquisition, Curation, and Dissemination of Spatial Cultural Heritage Data. Springer International Publishing, Cham, pp 93--131 ↩
-
Bruseker G, Carboni N, Fielding M, et al (2025) The Semantic Reference Data Modelling Method: Creating Understandable, Reusable and Sustainable Semantic Data Models. Journal of Open Humanities Data 11: https://doi.org/10.5334/johd.282 ↩
-
Cetinic E, She J (2022) Understanding and Creating Art with AI: Review and Outlook. ACM Transactions on Multimedia Computing, Communications, and Applications 18:1--22. https://doi.org/10.1145/3475799 ↩
-
Cornut M, Raemy JA, Spiess F (2023) Annotations as Knowledge Practices in Image Archives: Application of Linked Open Usable Data and Machine Learning. J Comput Cult Herit 16:80:1--80:19. https://doi.org/10.1145/3625301 ↩
-
Daga E, Groth P (2024) Data journeys: Explaining AI workflows through abstraction. Semantic Web 15:1057--1083. https://doi.org/10.3233/SW-233407 ↩
-
Daquino M (2024) Photo Archives and Linked Open Data. The Added Value. Open Library of Humanities 10: https://doi.org/10.16995/olh.15232 ↩
-
Delmas-Glass E, Sanderson R (2020) Fostering a community of PHAROS scholars through the adoption of open standards. Art Libraries Journal 45:19--23. https://doi.org/10.1017/alj.2019.32 ↩
-
Doerr M, Chrysakis I, Axaridou A, et al (2014) A Framework for Maintaining Provenance Information of [Cultural Heritage 3D-models]{.nocase}. In: Proceedings of the EVA London 2014 on Electronic Visualisation and the Arts. BCS, Swindon, GBR, pp 267--274 ↩
-
(2023) AI in relation to GLAMs Task Force: Report and Recommendations. Europeana ↩
-
Fiorucci M, Khoroshiltseva M, Pontil M, et al (2020) Machine Learning for Cultural Heritage: A Survey. Pattern Recognition Letters 133:102--108. https://doi.org/10.1016/j.patrec.2020.02.017 ↩
-
Foka AF Computer Vision Applications for Art History: Reflections and paradigms for future research ↩
-
Ghattas A Analysing the Use of Colors in Historical Prints and Drawings ↩
-
Hennicke S, Belouin P, Hajj HE, et al (2024) Sustainable Semantics for Sustainable Research Data. In: Bruns O, Poltronieri A, Stork L, Tietz T (eds) Proceedings of the First International Workshop of Semantic Digital Humanities (SemDH 2024). CEUR, Hersonissos, Greece ↩
-
Joyeux-Prunel B (2024) Digital humanities in the era of digital reproducibility: Towards a fairest and post-computational framework. International Journal of Digital Humanities 6:23--43. https://doi.org/10.1007/s42803-023-00079-6 ↩
-
Kim J, Chen H, Yang L, Simic J (2024) Exploring the Application of Artificial Intelligence and Machine Learning in GLAM Collections. Proceedings of the Association for Information Science and Technology 61:782--785. https://doi.org/10.1002/pra2.1101 ↩
-
Klic L (2023) Linked Open Images: Visual Similarity for the Semantic Web. Semantic Web ↩
-
Mager T, Khademi S, Siebes R, et al (2020) Visual Content Analysis and Linked Data for Automatic Enrichment of Architecture-Related Images. In: Kremers H (ed) Digital Cultural Heritage. Springer International Publishing, Cham, pp 279--293 ↩
-
Lee BCG, Mears J, Jakeway E, et al (2020) The Newspaper Navigator Dataset: Extracting Headlines and Visual Content from 16 Million Historic Newspaper Pages in Chronicling America. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, USA, pp 3055--3062 ↩
-
Lorenzini M, Rospocher M, Tonelli S (2021) On assessing metadata completeness in digital cultural heritage repositories. Digital Scholarship in the Humanities 36:ii182--ii188. https://doi.org/10.1093/llc/fqab036 ↩
-
Moreux J-P, Bermès E, Isaac A, José E., Cejudo (2021) Dealing with data issues for [AI-supported Image Analysis]{.nocase} in Cultural Heritage: Concrete cases and challenges ↩
-
Pellegrino MA, Scarano V, Spagnuolo C (2023) Move cultural heritage knowledge graphs in everyone's pocket. Semantic Web 14:323--359. https://doi.org/10.3233/SW-223117 ↩
-
Peroni S, Shotton D, Vitali F (2016) A document-inspired way for tracking changes of RDF data ↩
-
Resig J Using Computer Vision to Increase the Research Potential of Photo Archives ↩
-
Sanderson R (2023) Implementing Linked Art in a Multi-Modal Database for Cross-Collection Discovery. Open Library of Humanities. https://doi.org/10.16995/olh.15407 ↩
-
Mager T, Khademi S, Siebes R, et al (2023) Computer Vision and Architectural History at Eye Level: Mixed Methods for Linking Research in the Humanities and in Information Technology (ArchiMediaL). In: Schneider B, Löffler B, Mager T, Hein C (eds) Mixing Methods. Bielefeld University Press, pp 125--144 ↩
-
Smits T, Warner B, Fyfe P, Lee BCG (2025) A Fully-Searchable Multimodal Dataset of the Illustrated London News, 1842 –1890. Journal of Open Humanities Data 11: https://doi.org/10.5334/johd.284 ↩
-
Smits T, Wevers M (2023) A multimodal turn in Digital Humanities. Using contrastive machine learning models to explore, enrich, and analyze digital visual historical collections. Digital Scholarship in the Humanities 38:1267--1280. https://doi.org/10.1093/llc/fqad008 ↩
-
Theodoridou M, Tzitzikas Y, Doerr M, et al (2010) Modeling and querying provenance by extending CIDOC CRM. Distributed and Parallel Databases 27:169--210. https://doi.org/10.1007/s10619-009-7059-2 ↩
-
Westerby MJ (2024) Annotating Upstream: Digital Scholars, Art History, and the Interoperable Image. Open Library of Humanities 10: https://doi.org/10.16995/olh.17217 ↩
-
Wiel H vd, Garassino F, Li Z, et al (2024) Stakeholder Engagement for Sustainable Open Research Data Support Services: Insights from Interviews and Surveys in Switzerland ↩